Local polynomial regression analysis of clustered data

نویسنده

  • B KANI CHEN
چکیده

This paper proposes a classical weighted least squares type of local polynomial smoothing for the analysis of clustered data, with the key idea of using generalised inverses of correlation matrices. The estimator has a simple closed-form expression. Simplicity is achieved also for nonparametric generalised linear models with arbitrary link function via a transformation. Our approach can be characterised by ‘local observations with local variances’, which yields intuitively correct results in the sense that correct/incorrect specification of within-cluster correlation has respective positive/negative effects. The approach is a natural extension of classical local polynomial smoothing. Consequently, existing theory can be largely carried over and important issues such as bandwidth selection can be tackled in the classical fashion. Moreover, the approach can handle various types of covariate, such as cluster-level, subject-level or partially cluster-level. Numerical studies support the theoretical results. The method is illustrated with a real example on luteinising hormone levels in cows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-line...

متن کامل

Analyzing Longitudinal Data Using Gee-Smoothing Spline

This paper considers nonparametric regression to analyze longitudinal data. Some developments of nonparametric regression have been achieved for longitudinal or clustered categorical data. For exponential family distribution, Lin & Carroll [6] considered nonparametric regression for longitudinal data using GEE-Local Polynomial Kernel (LPK). They showed that in order to obtain an efficient estim...

متن کامل

Nonparametric Function Estimation for Clustered Data When the Predictor is Measured Without/With Error

We consider local polynomial kernel regression with a single covariate for clustered data using estimating equations. We assume that at most m < ∞ observations are available on each cluster. In the case of random regressors, with no measurement error in the predictor, we show that it is generally the best strategy to ignore entirely the correlation structure within each cluster, and instead to ...

متن کامل

Clustered Regression Analysis

Cluster structure in (multicollinear) data can be utilized by pattern recognition methods in order to find adequate subspaces for nonlinear regression. When regressing a particular severely nonlinear function, it is demonstrated that this approach is superior to polynomial PLS. It is also demonstrated that for nonlinear functions, the choice of regressing explained variables onto the explaining...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005